
metamisc - Meta-Analysis of Diagnosis and Prognosis Research Studies
Facilitate frequentist and Bayesian meta-analysis of diagnosis and prognosis research studies. It includes functions to summarize multiple estimates of prediction model discrimination and calibration performance (Debray et al., 2019) <doi:10.1177/0962280218785504>. It also includes functions to evaluate funnel plot asymmetry (Debray et al., 2018) <doi:10.1002/jrsm.1266>. Finally, the package provides functions for developing multivariable prediction models from datasets with clustering (de Jong et al., 2021) <doi:10.1002/sim.8981>.
Last updated 28 days ago
meta-analysisprognosisprognostic-models
7.63 score 6 stars 102 scripts 722 downloads
SimTOST - Sample Size Estimation for Bio-Equivalence Trials Through Simulation
Sample size estimation for bio-equivalence trials is supported through a simulation-based approach that extends the Two One-Sided Tests (TOST) procedure. The methodology provides flexibility in hypothesis testing, accommodates multiple treatment comparisons, and accounts for correlated endpoints. Users can model complex trial scenarios, including parallel and crossover designs, intra-subject variability, and different equivalence margins. Monte Carlo simulations enable accurate estimation of power and type I error rates, ensuring well-calibrated study designs. The statistical framework builds on established methods for equivalence testing and multiple hypothesis testing in bio-equivalence studies, as described in Schuirmann (1987) <doi:10.1007/BF01068419>, Mielke et al. (2018) <doi:10.1080/19466315.2017.1371071>, Shieh (2022) <doi:10.1371/journal.pone.0269128>, and Sozu et al. (2015) <doi:10.1007/978-3-319-22005-5>. Comprehensive documentation and vignettes guide users through implementation and interpretation of results.
Last updated 23 days ago
mcmcmulti-armmultiple-comparisonssample-size-calculationsample-size-estimationtrial-simulationopenblascpp
6.47 score 2 stars 7 scripts
precmed - Precision Medicine
A doubly robust precision medicine approach to fit, cross-validate and visualize prediction models for the conditional average treatment effect (CATE). It implements doubly robust estimation and semiparametric modeling approach of treatment-covariate interactions as proposed by Yadlowsky et al. (2020) <doi:10.1080/01621459.2020.1772080>.
Last updated 5 months ago
precision-medicine
4.20 score 4 stars 4 scripts 198 downloads